
Table Of Contents

Introduction to TreeWorld Scripts .. 2
What is a Treeworld script ? .. 2
What can I do with it ?... 2
How does it work ? ... 2
What do I need to know ? ... 3
Terminology ... 3

The XML interface ... 4
SOAP .. 4
XML input: TreeWorld Request ... 4
XML output: TreeWorld Response.. 5
Response Tag Attributes:.. 5
Children elements attributes ... 6

The java interface... 7
GetParameters .. 7
ExecutePlugIn ... 8
GetStatus .. 9
GetXpath... 9
getVisibility.. 9
GetExecutability ...10

The “Show Pretty” option... 11
What is the “Show Pretty” option? ...11
How does it work? ...11
What can I do?..11

Installation and configuration .. 12
Directories and files...12
Java libraries ...12
Graphic files ..12
XSL stylesheet for the “show pretty” option..13

A sample script ... 14

Best practice tips................................ Error! Bookmark not defined.

Frequently Asked Questions Error! Bookmark not defined.

References... 17

Appendices .. 18
A – Developing scripts in java using the ScriptCreator.......................................18
B – How to debug a script ..18
C – Java help method ..Error! Bookmark not defined.
D – Other XML by TreeWorld ...18

Introduction to TreeWorld Scripts

What is a Treeworld script ?
A TreeWorld script is a BeanShell script that can be executed on any item that is displayed in
TreeWorld browser.

TreeWorld Browser is a tree-based GUI for browsing arbitrary hierarchical information. It is
built in to the Topologi Professional Edition. More information on TreeWorld and Topologi
can be found on: http://www.topologi.com

BeanShell scripts are like lightweight java scripts. Because they are scripts, they do not need
to be compiled: they are dynamically interpreted by TreeWorld. Also their structure is a bit
more loose than usual Java classes, however, they give the developer full access to the Java
API.

For more information on BeanShell script: http://www.beanshell.org/

What can I do with it ?
TreeWorld scripts are task-based. In other words, they can be used to do anything on the
node(s) the user has selected in TreeWorld. They should but do not have to return something,
typically it would be a tree of nodes that would be displayed by TreeWorld, the scripts allows
the developer to decide what needs to be displayed by TreeWorld and how.

Because the scripts can use the complete java API as well as any java library that the
developer would like to include, any functionality can be plugged into TreeWorld. Scripts
could be used to resize images, validate XML files, generate an index, search documents,
produce reports, etc…

For example, when TreeWorld displays the content of a directory, a set of tasks can be
applied on any of the files, those tasks are TreeWorld scripts.

How does it work ?
When the user select one or several nodes in the TreeWorld browser, the list of tasks can be
executed appears. Once the user has chosen which task to execute, and possibly filled in any
required parameters, the corresponding script is interpreted the Universal Wire framework.

Universal Wire uses a client-server type of architecture, where TreeWorld acts as the client
and the script is the service:

1. TreeWorld send request trough the Universal Wire.
2. The script receives the XML request.
3. The script produces XML response(s) that it sends via Universal Wire.
4. TreeWorld receives the XML response.

However, scripts do not need to wait until they have finished to send XML responses. In fact,
TreeWorld can receive XML responses at any time during the execution of the script allowing
more interactive et informative processing.

[diagram showing architecture]

http://www.topologi.com/
http://www.beanshell.org/

What do I need to know ?
Writing TreeWorld scripts does not require a lot of experience in either BeanShell, Java or
XML, however some basic knowledge of java and XML is essential. Having some
understanding of XML namespaces and DOM (Document Object Model) is helpful.

Terminology
Topologi Terminology
Topologi
 The Collaborative Markup Editor.

Universal Wire

A framework allowing peer to peer collaboration in a service-oriented environment
using SOAP as its main communication protocol.

TreeWorld

A tree-based GUI for browsing hierarchical information: the browser for Universal
Wire.

The XML interface
The request and response are using XML 1.0.

SOAP
Topologi’s Universal Wire wraps all the requests and responses using SOAP 1.2 (Messaging
Framework). This means that all requests and responses that will be received by the script will
have the following structure:

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header encodingStyle="http://www.topologi.com/ns/treeworld/header" />
<env:Body encodingStyle="http://www.topologi.com/ns/treeworld/body">

[treeworld_request | treeworld_response]

</env:Body>
</env:Envelope>

For more information on SOAP, refer to the W3C website:

http://www.w3.org/TR/soap12-part1/

XML input: TreeWorld Request
The XML input corresponds to what TreeWorld sends through Universal Wire to the script,
and that is wrapped by a SOAP envelope, it encapsulates the user input in an XML format.

The selected nodes are wrapped around a TreeWorld Request element. It belongs to the
Topologi TreeWorld namespace. It includes the namespace declaration , the unique identifier
of the TreeWorld browser (guarantees unicity amongst peers) and the behaviour of the script
as attributes using the same namespace.

The parameters for the scripts are provided by TreeWorld as attributes name/value pairs,
where each parameter name appears as the attribute name, and its value as the attribute value.
Those attributes belong to the default namespace.

The children of the Request element correspond to the tree of node selected by the user in
TreeWorld if any.

A TreeWorld request has the following structure:

<tw:Request xmlns:tw=”http://www.topologi.com/ns/treeworld/Body”
 tw:treeworldId="[auto_generated_unique_id]"
 tw:behaviour="[behaviour_defined_by_the_script]"
 [param_name1]="[param_value_1]"
 [param_name2]="[param_value_2]"
 [param_name3]="[param_value_3]"
 ...
 >
 [input_nodes_selected]

</tw:Request>

http://www.w3.org/TR/soap12-part1/

XML output: TreeWorld Response
The XML output corresponds to what TreeWorld receives from the script, and that is wrapped
by a SOAP envelope.

The generated nodes are wrapped around a TreeWorld Response element which belongs to
the Topologi TreeWorld namespace. It includes the namespace declaration and the behaviour
of the script as attributes using the same namespace.

A TreeWorld response has the following structure:

<tw:Response xmlns:tw="http://www.topologi.com/ns/treeworld/Body"
tw:behaviour="replace">
 [message_or_nodes_from_script]
</tw:Response>

All children elements are used to create nodes for the tree. How these nodes are handled
depends on the type of the response, specified in the attributes of the element Response.

Response Tag Attributes:
tw:error
Attribute used to specify that the response is an error response. The value should be
true or 1 for the response to be considered an error response.
If a response is an error response, the tree is not modified and the error message is
displayed in the status bar.

tw:behaviour
This attribute is required, if not present, the value is replace.
TreeWorld defines 5 different types of behaviour:

 replace: creates a new tree (in a new tab).
 overwrite: overwrites nodes in the current tree.
 leave: does not change the current tree.
 append: adds nodes to the current tree as children of the node specified in the

attribute tw:select_node.
 delete: deletes nodes in the current tree (all nodes to delete are specified with their

tw:id attribute in the response message).

tw:title
This attribute is used only in case of the creation of a new tree (tw:behaviour value is
replace). The value is used as the title of the new tab.
This attribute is strongly recommended for a replace response.

tw:select_node
If specified, the value of this attribute is used to select a node in the tree after
reception of the response. Its value is the id (attribute tw:id) of the node to select. This
attribute is required if the type is append, as it specifies the node to append the
response to.

tw:message
If specified, the value of this attribute is used as a status message and displayed in the
status bar.

tw:warning
If specified, the value of this attribute is used as a warning message and displayed in
the status bar.

tw:move
This attribute is used only for an overwrite response. Its value can be either up or
down. The result is the movement of the replaced node(s) in the direction specified
and if possible.

Children elements attributes
All these elements are used to create nodes for the tree. Each element represents a node in the
tree and its node representation is defined by the attributes of the element.

tw:id
This attribute is not required as it is created if not specified (and needed). It’s used to specify
a node in the tree, as its value is unique in this tree.

tw:name
Used as the label of the node in the tree. If it’s not specified, the element tag name
will be used, it is therefore highly recommended to specify this attribute.

tw:open
Optional, this attribute is used to specify a default open Treeworld URL. Its value is a
valid Treeworld URL (starting with treeworld://…). If a node has a default open
action, a menu item called “Open” will appear as the first action available in the
popup menu generated on a right-click. If not specified, the default

tw:flag
Optional, the value of this attribute is used to load an icon from the icon directory.
This icon is displayed after the label of the node.

tw:decoration
Optional, the value of this attribute is used to load an icon from the icon directory.
This icon is displayed in front of the label of the node.

tw:link
Optional, this attribute is used to point to another node in the same tree. Its value is the id of
the node pointed to, preceded by the # character (based on html anchor). If this attribute is
present, a link icon will appear after the label of the node and when this node is double-
clicked on, the pointed node will be selected (if found).

The java interface
A topologi script should implement all of the methods defined in this section.

BeanShell script being a dialect of java, here are the important differences:

 no need to declare the class: methods are declared directly,
 no fields are allowed as a script is not a class, just an ensemble of methods,
 no need to define the methods as public or private, they all behave as if they were

public,
 methods cannot throw exceptions,
 the following return statement must be included at the end:

return (ServicePlugInScript) this;

GetParameters
This method defines the parameters that the user can send to the script. These parameters are
passed in the request as attributes so their value is represented as a String object. The list of
all parameters is a Map object, its keys are the names of all parameters and the values are their
types or default values.

The parameters names are used to identify each parameter and will be displayed in
the parameter window. To present the parameters in a specific order, they should be preceded
by the order number followed by the dash character (see example). The values can be of two
types: the type of the parameter or a set of values (or only one) to choose from.

If the value is a Class object, it will be used to select how to present the parameter in
the window:

Class used Visual Component used
String A text box (single line)
JTextArea A larger text box (multi-line)
File A text box followed by a “Browse” button to select a file only
FileDescriptor A text box followed by a “Browse” button to select a directory only
Boolean A check box (not selected)
JPasswordField A password text box (the text entered is hidden)
Anything else A text box single line

If the value is an object that is not a class, this object is used in the same fashion to display the
parameter. There are currently two types of object supported: a String and a Vector, any other
objects will be turned into a String and used as such. For a String, the value is used as an
XPath relating to the node currently selected in the tree, if a simple default value is wanted,
then enclosing it with single quotes is enough. For a Vector, the first value of the Vector is
also considered as an XPath (can be used to set a default value as the first value of the list is
the one selected by default).

Java Interface

Map getParameters()

Example (and its result):
 Map params = new Hashtable();
 params.put(File Name","@tw:name"); "1-
 Vector v = new Vector();
 v.add("'XML'");
 v.add("PDF");
 v.add("SGML");
 params.put("2-File type",v);
 params.put("3-New File",Boolean.class);
 return params ;

ExecutePlugIn
The method executes the task it was meant to do. It does not return anything as it has access
to the data and handler provided by TreeWorld. A utility class called ScriptsUtil provides
various methods to help with the execution of the task.

Java Interface

void executePlugIn(PlugInData pd, PlugInResultHandler handler);

Getting the request
After retrieving the request object from the PlugInData object using the following line:
TreeWorldRequest twr = (TreeWorldRequest)
pd.getDocumentData().getProperty(DocumentData.TREEWORLD_REQUEST);

The best way to handle the request is to build a DOM object from it. The method
getRequestAsDOM(TreeWorldRequest twr); returns the DOM object that can be used to get the
request’s details. Most of the relevant information is in the actual Request element that can be
obtained with the method getRequestElement(Document dom);

Retrieving parameters
If any parameters were specified in the getParameters() method, they need to be retrieved to
be used. Standard parameters are passed as attributes of the Request element and here again
the ScriptsUtil class has the standard method getAttribute(Node node, String attr);, which
returns the defined attribute from the given element. As these parameters are passed as
attributes, the space character is not allowed and the underscore character replaces any space
specified in the parameter name. Also, the ordering number sometimes used In the parameter
name is stripped for the attribute name.
 For specific attributes, more methods are defined in the utility class.
getAttributeAsBoolean(Node node, String attr, boolean defaultValue); can be used to
retrieve Boolean attributes, it returns a boolean and needs a defaultValue parameter in case
the attribute is not found. getFullPathAttribute(Node node); can be used to obtain the full
path attribute (tw:full_path) (usually nodes of type File or Directory) and
getNodeIDAttribute(Node node); returns the id attribute (tw:id) of any node.

Parameters retrieval example:
 Based on the previous example, here si the retrieval of the parameters:
 String filename = ScriptsUtil.getAttribute(requestNode, “File_Name");
 String fileType = ScriptsUtil.getAttribute(requestNode, “File_Type");

boolean isNewFile = ScriptsUtil.getAttributeAsBoolean(requestNode, “New_File",
true);

Sending the response
As said before, there are different types of request to send back to the client.
To send a response to the client, there are once again a couple of methods provided by the
ScriptsUtil class. All these methods have common parameters, the request received (twr)
used for its uuid, the PlugInData object (pd) and the PlugInResultHandler (handler) that will
receive the response:

- sendNormalResponse(String xml, TreeWorldRequest twr, PlugInData pd,
PlugInResultHandler handler);

The xml parameter is the response that will be used to create the tree. This method is used to
send a standard response to the caller. The response can be of any type as the entire XML
response is passed as parameter (with soap headers).

- sendErrorResponse(String error, TreeWorldRequest twr, PlugInData pd,
PlugInResultHandler handler);
In this case, the response is only an error response. The error parameter is simply the error
message and will appear as an error message in the status bar of the Treeworld application.

- sendStatusMessageResponse(String message, TreeWorldRequest twr, PlugInData pd,
PlugInResultHandler handler);
This last method is used to send a response of type leave to the caller. A simple status
message (passed as the parameter message) is displayed in the status bar and the tree currently
displayed is not modified.

GetStatus
This method defines the names of service and action provided by the script.

Java interface

String[] getStatus();

In TreeWorld, the returned String array appears as a list of menus and submenu, the last item
in the array being the highest hierarchical item, the first item being the name of the action.

Example:
 new String[]{'Resize Image', 'Image Scripts', 'My Scripts'}

 (will appear in TreeWorld as My Scripts > Image Scripts > Resize Image)

GetXpath
This method defines which nodes the script is attached to.

Java interface
 String getXpath();

The returned Xpath corresponds to the nodes the script applies to. The Xpath context is the
level of the task. Any Xpath 1.0 function can be used. Note that Xpath 1.0 is case sensitive.

Example:
 File[translate(@extension,'XML', 'xml') = 'xml']

 (applies to all files which extension is ‘xml’ regardless of the case)

getVisibility
This method defines the visibility of script, that is where in TreeWorld it can be triggered.

Java interface

String getVisibility();

TreeWorld defines 4 levels of visibility:

 element: for scripts that are triggered from the element node in the main TreeWorld
window.

 attribute: for scripts that are triggered from the attribute node in the main TreeWorld
window. In this case, the XPath needs to point to an XML attribute.

 go: for scripts that are triggered from the “go” menu in TreeWorld (those scripts
generally don’t have parameters).

 no: for the scripts that the user does not trigger directly, but that could be used by
other scripts.

The most common option here are “element” or “go”.

GetExecutability
This method defines the level of executability of the script.

Java interface

String getExecutability();

TreeWorld currently has 4 different levels:

 local: the script is stored and for use on the local machine only, local scripts are not
shared,

 peer: the script can be shared and used by the Topologi peers on the network,
 central: same as peer but when “update script” is ticked, the script is downloaded

from the central server into the folder,
 topologi: same as peer but when “update script” is ticked, the script is downloaded

from the Topologi web server into the folder.

Most customised scripts would use ‘local’ by default.

The “Show Pretty” option

What is the “Show Pretty” option?
This option allows an HTML display of the node selected in the tree. The HTML view is
visible on the right-hand side panel of the client frame. The “show pretty” option is the
default view and this cannot be turned off (but another view can be selected instead: “show
properties” or “view source”).

How does it work?
The first step is the selection of the XSL Stylesheet used to preview the node. This selection
is based on the type of the node: if there is a file in the stylesheet directory which name
correspond to the current node then the “Show pretty” option is turned on. The file must
follow a naming convention: <Type>ToHTML.xsl (i.e. FileToHTML.xsl, see Installation
section).
Once the stylesheet is found, an XML representation of the selected node is created. The
XML data is then transformed to HTML using the stylesheet and the result is displayed as
HTML in the right-hand side panel. The XML representation of the node has a specific
format, containing variables that can be used in the stylesheet:
<root>

 <imageDir>[Location of the images directory]</imageDir>
 <libDir>[Location of the lib directory]</libDir>
 <tmpDir>[Location of the temp directory]</tmpDir>
 <contents>

[XML representation of the node (as seen in the “view source” option)]
</contents>

</root>

What can I do?
Java HTML Pane supports HTML version 3.2 (migrating towards 4.0).

Images are allowed and must be located in a specific directory (treeworld/images/html, see
Installation section). This directory should be retrieved in a varaiable in the stylesheet:

<xsl:variable name="imageDir" select="/root/imageDir" />

The stylesheet should transform the XML representation of the node, this is available using
the following template:
<xsl:template match="/">
 <xsl:apply-templates select="root/contents" />
</xsl:template>
<xsl:template match="contents">
 [Enter your code here…]
</xsl:template>

A very special feature added in the Treeworld HTML preview panel is the use of Treeworld
URL. As a matter of fact, a Treeworld URL can be used as a normal HTML link in an “a” tag
(i.e. Open).
When the link is clicked on, a request is sent to the action pointed by the URL. The node
selected in the tree is used in the request.

Installation and configuration

Directories and files
All scripts are located in the treeworld directory of the installation directory, under the
services folder. Each service has its own directory, which name is used has a reminder of
what the service is but not used anywhere (except in the URL of each script but that is
transparent to the user). Each service directory must implement the Topologi hierarchy, that
means that each Service directory must contain four subdirectories called central, local, peer
and topologi. Any of these can contain scripts, the only difference is how the script is shared
or where it is coming from. A script coming from Topologi (from installation or a web service
update) is more likely to be in the topologi folder, the peer directory contains scripts to share
with other peers (scripts can be downloaded from one peer to the other, feature not
implemented yet). The central folder is likely to contain scripts coming from a central server
(i.e. intranet) and finally local scripts are not shared and are usually customized scripts
created locally.
Each script file name must follow the pattern: <script name>-<version>.bsh

Java libraries
TreeWorld being part of Topologi professional edition, uses the same java instance. At
present, Topologi uses the Java 2 Standard Edition version 1.4.2, although this could change
in the future, this will be the minimum supported by topologi.

Information regarding Java 1.4.2 can be found on the java website at:
http://java.sun.com/j2se/1.4.2/docs/

It is possible to include more java libraries for use by the scripts, they simply need to be
placed under the /jar directory of the Topologi’s installation directory.

Graphic files
There are different types of images used in Treeworld, they are gathered in the following
table:

Description Image type Location
Node icon. Used to represent the node
in the tree, for each type an expanded
icon can be specified. Naming
convention:
<Type>.gif and <Type>_exp.gif

Gif file (16x16
recommended)

treeworld/images/types

Decoration icon. Used to decorate the
node in the tree (see attributes tw:flag
and tw:decoration). No naming
convention.

Gif file (16x16
recommended)

treeworld/images/decoration

HTML images. Used by the XSL
transformation to display the node in
mode “Show pretty”.

Any image
file.

treeworld/images/html

http://java.sun.com/j2se/1.4.2/docs/

XSL stylesheet for the “show pretty” option
Any XSL stylesheet used to show a node in the preview panel (see the “Show pretty” section)
is supposed to be located in the lib directory, under the nodeStyles folder. The XSL files
must follow the naming convention: “<Node Type>ToHTML.xsl”. <Node Type> is the type
of the node to preview, in other words it’s the name of the element in the source of the tree
(i.e. File or Directory).

A sample script
A simple example but functionally complete.
Comments are included as java comments.

// use the following standard java libraries
import java.io.*;
import java.util.*;
import org.w3c.dom.*;

// use the following libraries from topologi
import com.topologi.tme2.io.plugins.*;
import com.topologi.tme2.io.worklistmodel.*;
import com.topologi.tw.message.*;
import com.topologi.tw.scripts.*;
import com.topologi.tw.service.*;

void executePlugIn(PlugInData pd, PlugInResultHandler handler) {
 // get the TreeWorld request
 TreeWorldRequest twr = (TreeWorldRequest)pd.getDocumentData()
 .getProperty(DocumentData.TREEWORLD_REQUEST);
 // proceed only if the request is not null
 if (twr != null) {
 Document request = null;
 try {
 // get the request as a DOM tree, which make it easier to manage
 request = ScriptsUtil.getRequestAsDOM(twr);
 // Retrieve the TreeWorld Request element
 Node body = ScriptsUtil.getRequestElement(request);
 // retrieve the parameter from the user
 String newName = ScriptsUtil.getAttribute(body, "New_file_name");
 // if the new name is null, it probably means that the user did not specify it
 if (newName == null) {
 // we return an error message to TreeWorld and end processing
 ScriptsUtil.sendErrorResponse("No new file name", twr, pd, handler);
 return;
 }
 // we can now retrieve all the file nodes and directory nodes from the request
 List files = ScriptsUtil.getChildrenNamed(body, "File");
 List dirs = ScriptsUtil.getChildrenNamed(body, "Directory");
 // if no files or directory were selected
 if (files.isEmpty() && dirs.isEmpty()) {
 // we return an error message to TreeWorld and end processing
 ScriptsUtil.sendErrorResponse(
 "No file or directory selected", twr, pd, handler);
 return;
 }
 // apply our 'renameFiles' method on the files and directories
 renameFiles(files, newName, twr, pd, handler);
 renameFiles(dirs, newName, twr, pd, handler);
 // apply our 'renameFiles' method on the files and directories
 } catch (Exception e) {
 ScriptsUtil.sendErrorResponse("An error occurred while creating a "+

"response: "+e.getMessage(), twr, pd, handler);
 }
 }
}

void renameFiles(List dirs, String newName, TreeWorldRequest twr, PlugInData pd,
PlugInResultHandler handler) {
 String type = "";
 for (int i = 0; i < dirs.size(); i++) {
 Node dir = (Node) dirs.get(i);
 String path = ScriptsUtil.getFullPathAttribute(dir);
 String fileId = ScriptsUtil.getNodeIDAttribute(dir);
 String error = null;
 File toFile = null;
 if (path != null) {
 File f = new File(path);
 if (!f.exists()) {
 error = "The file "+path+" is not valid";
 } else {

 if (f.isFile()) type = "File";
 else type = "Directory";
 toFile = new File(f.getParent(), newName);
 if (toFile.exists()) {
 error = "The file "+toFile.getAbsolutePath()+" already exists";
 } else {
 if (!f.renameTo(toFile)) {
 error = "Renaming of the file failed";
 }
 }
 }
 }
 if (error != null) {
 ScriptsUtil.sendErrorResponse(error, twr, pd, handler);
 return;
 }
 ScriptStringBuffer responseXML = new

ScriptStringBuffer(TreeWorldMessageUtils.createStartResponse());
 responseXML.append(" tw:behaviour=\"overwrite\">");
 // Append the XML for the current file
 responseXML.openTag(type);
 // Append the name attribute
 responseXML.appendXMLAttribute("tw:name", newName);
 // add the id
 responseXML.appendXMLAttribute("tw:id", fileId);
 // Append the full_path attribute
 responseXML.appendXMLAttribute("tw:full_path", toFile.getAbsolutePath());
 responseXML.appendDateAttribute("date", toFile.lastModified());
 if (type.equals("Directory")) {
 responseXML.append(" size=\"-1\"");
 responseXML.append(" extension=\"___\"");
 } else {
 responseXML.append(" size=\"").append(toFile.length()).append("\"");
 if (toFile.getName().indexOf('.') != -1) {
 String name = toFile.getName();
 responseXML.append("extension=\"");
 responseXML.append(name.substring(name.lastIndexOf('.')+1)).append("\"");
 }
 }
 responseXML.append("/>");

 responseXML.append(TreeWorldMessageUtils.createEndResponse());
 ScriptsUtil.sendNormalResponse(responseXML.toString(), twr, pd, handler);
 }
}

/*
 * This script only require the new file name to be able to work.
 * Because we're nice we even give the user the original name of the file
 * by grabbing it from the File or Directory node.
 */
Map getParameters() {
 Map m = new Hashtable();
 m.put("New file name", "@tw:name");
 return m;
}

/*
 * This script will appear as 'Rename' under the 'File System' menu.
 */
String[] getStatus() {
 return new String[] {"Rename", "File"};
}

/*
 * The script should only apply to the File and Directory element nodes the
 * user has selected.
 */
String getXpath() {
 return "File | Directory";
}

/*
 * The script should only be visible for element nodes in the TreeWorld
 * browser. Its name will appear in the list of available tasks for
 * element nodes that match the given Xpath.

 *
 * @see getXpath
 */

String getVisibility() {
 return "element";
}

/*
 * We only want to allow local execution of the script.
 * (Other peers will not be able to remotely use this script)
 */
String getExecutability() {
 return "local";
}

// Always include this statement (required by the BeanShell specifications)
return (ServicePlugInScript) this;

 References
Some references.

 BeanShell scripts:
http://www.beanshell.org/

 XML Extensible Markup Language (XML) 1.0 (Second Edition) – a W3C

Recommendation 6 October 2000:
http://www.w3.org/TR/REC-xml

 XML Path Language (XPath) Version 1.0 – a W3C Recommendation 16 November

1999:
http://www.w3.org/TR/xpath

 SOAP (Simple Object Access Protocol) Version 1.2 Part 1: Messaging Framework –

a W3C Recommendation 24 June 2003:
http://www.w3.org/TR/soap12-part1/

 Namespaces in XML – World Wide Web Consortium 14-January-1999:

http://www.w3.org/TR/REC-xml-names/

 XSL Transformations (XSLT) Version 1.0 – a W3C Recommendation 16 November
1999:
http://www.w3.org/TR/xslt

 Topologi, TreeWorld and Universal Wire – Topologi Collaborative Markup Editor:

http://www.topologi.com

 Java 2 Standard Edition Documentation – version 1.4.2:
http://java.sun.com/j2se/1.4.2/docs/

http://www.beanshell.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xslt
http://www.topologi.com/
http://java.sun.com/j2se/1.4.2/docs/

Appendices

A – Developing scripts in java using the ScriptCreator
 [to do]

B – How to debug a script
 [some typical errors, could be under FAQ as well, to do]

D – Other XML by TreeWorld
 [put here, the XML for files and directories, to do]

	Table Of Contents
	Introduction to TreeWorld Scripts
	What is a Treeworld script ?
	What can I do with it ?
	How does it work ?
	What do I need to know ?
	Terminology
	Topologi Terminology
	Topologi
	Universal Wire
	TreeWorld

	The XML interface
	SOAP
	XML input: TreeWorld Request
	XML output: TreeWorld Response
	Response Tag Attributes:
	tw:error
	tw:behaviour
	tw:title
	tw:select_node
	tw:message
	tw:warning
	tw:move

	Children elements attributes
	tw:id
	tw:name
	tw:open
	tw:flag
	tw:decoration
	tw:link

	The java interface
	GetParameters
	Java Interface
	Example (and its result):

	ExecutePlugIn
	Java Interface
	Getting the request
	Retrieving parameters
	Parameters retrieval example:
	Sending the response

	GetStatus
	Java interface
	Example:

	GetXpath
	Java interface
	Example:

	getVisibility
	Java interface

	GetExecutability
	Java interface

	The “Show Pretty” option
	What is the “Show Pretty” option?
	How does it work?
	What can I do?

	Installation and configuration
	Directories and files
	Java libraries
	Graphic files
	XSL stylesheet for the “show pretty” option

	A sample script
	References
	Appendices
	A – Developing scripts in java using the ScriptCr
	B – How to debug a script
	D – Other XML by TreeWorld

